بلاگروش های اجرا و ساخت

بادبندهای واگرا

بادبندهای واگرا

چکیده

بادبندهای واگرا دارای قابلیت بسیار خوب جذب انرژی و نیز شکل پذیری و سختی مناسبی هستند و در عین حال استفاده از آنها در سازه ها با ظرافت های ویژه ای همراه است بطوریکه عدم طراحی مناسب و اجرای نکاتی خاص اعتبار سیستم را براحتی مخدوش می کند. متأسفانه در کشورمان طراحی و اجرای اینگونه سیستمها بر مبنای ضوابط خاص صورت نمی گیرد و در نتیجه مقاوم سازی بسیاری از این سا زه ها را در پی خواهد داشت. محور اصلی این مقاله شناسایی نقاط ضعف سازه های موجود با سیستم مهاربندی واگرا در درگیری با زلزله طرح و ارائه پیشنهاداتی در چگونگی بازسازی تا سطح نیاز لرز های می باشد. در این کار پژوهشی نمونه هایی از سازه های متداول با سیستم یاد شده انتخاب و با مدلسازی به روش تحلیل غیرخطی، بر مبنای روش عملکردی مورد مطالعه قرار گرفته است. انواع ضعفهای محتمل سازه ای شناسایی و راهکارهای رفع نقیص ههای موجود ارائه گردیده است بطوریکه سیستم بتواند از خود رفتار لرز ه ای مناسبی را نشان دهد.

مقدمه

بادبندهای واگرا در صورت طراحی و اجرای صحیح دارای قابلیت بسیار خوب جذب انرژی و نیز شکل پذیری  و سختی مناسب در درگیری با زلزله های قوی هستند و در تمامی آیین نامه های معتبرخارجی به عنوان یکی ازسیتمهای مناسب لرزه ای شناخته شده اند. در این گونه سیستم های سازه ای محل اتصال اعضای مهاربند بطور عمد در محل تلاقی تیر و ستون قرار نمی گیرند و قسمتی از تیر که بین محل اتصال بادبند و محل اتصال تیر به ستون، یا بین نقاط اتصال دو بادبند قرار دارد تیر پیوند نامیده میشود. مهمترین مزیت قاب های واگرا در طراحی سازه های مقاوم در برا بر زلزله ترکیب سختی مناسب، قابلیت شکل پذیری بالا و توانایی جذب و استهلاک انرژی ناشی از زلزله های قوی با تشکیل گسترده مفصل های پلاستیک می باشد[ ۱].

تعاریف:

باد بندهای هم محور: در سیستم بادبندی هم محور طراحی تیرها در دهانه های بادبندی همانند دیگر تیرهای معمولی وتحت بارهای ثقلی انجام می پذیرد و در ترکیب بار زلزله نیروی قابل توجهی در این تیرها ایجاد نمیشود ؛ اما در سیستم برون محور علاوه بر برش و لنگرهای بارهای ثقلی ، در ترکیب بار زلزله ودر اثر نیروهای محوری ایجاد شده در بادبندها یک سری لنگر و برش اضافی در این تیرها ایجاد می شود و باعث بحرانی شدن ترکیب بار زلزله برای طراحی این تیرها می شود . معمولاً محل بحرانی در این تیرها محل اتصال بادبند به تیر می باشد و در این محل عموماً احتیاج به ورق تقویتی بال بالا وپایین می باشد.

طراحی تیرچه ارتباطی :یکی از مهمترین و حساس ترین مسایل در سیستم برون محور ، طراحی تیرچه ارتباطی می باشد ؛ مساله ای که اکثر طراحان به راحتی از کنار آن میگذرند. برخی از مسایلی که در طراحی تیرچه ارتباطی باید به آن توجه نمود ، به شرح زیر می باشد:

۱- مطابق آیین نامه(( تیرچه ارتباطی باید تمامی شرایط مقطع فشرده را دارا باشد.)) به این ترتیب در صورت عدم استفاده از مقاطع نورد شده و استفاده از مقاطع ساخته شده (تیر ورق) باید محدودیتهای مقطع فشرده در آن رعایت شود و مخصوصاً اتصال بال و جان تیرورق (حداقل در قسمت تیرچه ارتباطی) باید با جوش پیوسته (ونه جوش منقطع) انجام گیرد. ضمن آنکه باید توجه داشت که جوش اتصال بال به جان باید در برابر تنشهای برشی موجود کفایت لارم را داشته باشند.(این مساله در تیرچه های ارتباطی کوتاه که معمولاً به صورت برشی عمل نموده و داراری برشهای زیادی هستند بسیار حساستر میباشد.)

۲- مطابق آیین ئامه ((جان قطعه رابط باید از یک ورق تک بدون هرگونه ورق مضاعف کننده تشکیل یابد و هیچگونه بازشویی نباید در جان قطعه رابط تعبیه شود.)) به این ترتیب همانطور که مشخص است استفاده از مقاطع دوبل (به علت وجود بیش از یک جان ) و مقاطع زنبوری (به علت وجود سوراخ در جان ) برای قطعه رابط از نظر آیین نامه یک امر کاملاً مردود می باشد؛ امری که متاسفانه بسیار معمول می باشد. گاهی دیده شده است که برخی طراحان برای قطعه رابط از مقطع زنبوری استفاده نموده و تمامی سوراخها را در قسمت تیرچه ارتباطی به وسیله ورق تقویتی جان می پوشانند، که این مساله نیز به این دلیل که ورق تقویتی جان به نوعی یک ورق مضاعف کننده می باشد، از نظر آیین نامه مردود میباشد. پیشنهاد میشود که در صورت عدم جوابگویی مقاطع نورد شده تک برای این تیرها، طراحان از مقطع I شکل و به صورت تیرورق و با جوش پیوسته جان وبال در قسمت قطعه رابط استفاده نمایند و به هیچ وجه از مقاطع دوبل وزنبوری استفاده ننمایند.

۳– مطابق آیین نامه ((در انتهای قطعه رابط که عضو قطری به آن متصل است، باید سخت کننده جان در تمام ارتفاع ، در دو طرف قرار داده شود.)) یکی از شایعترین ایرادات در طراحی قطعه رابط همین مساله میباشد ، که طراحان باید به این مساله توجه بیشتری نمایند. این مساله به غیر از سخت کننده های میانی قطعه رابط میباشد که لزوم قرارگیری یا عدم قرارگیری آنها باید توسط طراحان مورد بررسی قرار گیرد.

طراحی عضو قطری (بادبند):طراحی عضو قطری در این سیستم مشابه سیستم هم محور میباشد با این تفاوت که طبق آیین نامه ((هر بادبند باید دارای مقاومت فشاری ۱٫۵ برابر نیروی محوری نظیر مقاومت خمشی قطعه رابط باشد.)) با توجه به اینکه در حالت طراحی معمولی مقاومت فشاری بادبند و مقاومت خمشی قطعه رابط به همدیگر نزدیک میباشند ، رعایت این بند باعث بالا رفتن سطح مقطع بادبند تا حدود ۵۰ درصد نسبت به طراحی حالت معمولی در این سیستم میشود؛ ضمن آنکه باید توجه داشت که در این سیستم به دلیل آنکه معمولاً زاویه بادبندها با افق نسبت به سیستم هم محور بیشتر می باشد ، نسبت به سیستم هم محور نیروی محوری بیشتری در بادبندها ایجاد می شود.

شکل پذیری بالای قاب های واگرا را می توان ناشی از دو عامل زیر دانست:

الف- در هنگام وقوع زلزله های قوی تغییر شکل غیر ارتجاعی محدود به تیر پیوند می شود و ضرورتا این تیرطوری طراحی می شود که بتواند تغییر شکل های بزرگ غیر ارتجاعی لازم را بدون افت مقاومت تحمل کند.

ب- مهاربندی ها طوری طراحی می شوند که تا رسیدن به شکل پذیری لازم و تغییرشکلهای دو انتهای تیر پیوند،کمانش نکنند.

۲-  روش طیف ظرفیت سیستم های سازه ای را می توان به طرق مختلف از لحاظ توان لرزه ای ارزیابی نمود. یکی از روشهایی که اخیراً متداول گردیده, ”روش عملکردی“ یا ارزیابی بر اساس عملکرد ساز ه ها می باشد. روش طیف ظرفیت از جمله ۲وارد گردیده است. این روش یک ]ATC- روشهای ارزیابی عملکرد می باشد که در سال ۱۹۹۶ در آیین نامه ۴۰ شیوه استاتیکی غیرخطی است که منحنی بار جابجایی (منحنی ظرفیت) کل سازه را به صورت گرافیکی ارائه نموده و با یافتن طیف ظرفیت، آنرا با طیف پاسخ نیاز زلزله مقایسه م یکند. این روش ابزار بسیار مفیدی برای ارزیابی ساختمانهای موجود و شیو ه های تقویت ارائه میدهد. نمایش گرافیکی طیف ظرفیت، تصویر واضحی از چگونگی پاسخ سازه در برابر تحریکات زمین لرزه فراهم نموده و چگونگی تأثیرگذاری شیو ه های مختلف تقویت را بر روی پاسخ لرز های ساختمانها نشان می دهد. در این روش برای تخمین حداکثر جابجایی سازه تحت طیف زلزله طرح، ازنقطه تلاقی طیف ظرفیت و طیف نیاز سازه استفاده می شود.

برای تخمین میرایی مؤثر و بدست آوردن طیف نیاز کاهش یافته، در ابتدا یک نقطه عملکرد آزمایشی حدس زده می شود، اگر طیف پاسخ نیاز کاهش یافته ای پیدا شود واقعی سازه خواهد (Performance Point) که طیف ظرفیت را در آن نقطه قطع کند، نقطه مزبور، نقطه عملکرد بود، در غیر اینصورت روند سعی و خطا تکرار می گردد. با یافتن میرایی مؤثر و با استفاده از روابطی که توسط نیومارک و هال ارائه شده است[ ۳]، ضرایب کاهش طیفی تخمین زده می شود. جزئیات بیشتر این روش وغیرخطی، (Push Over) محدودیتهای آن در مرجع [ ۱] آورده شده است. با استفاده از روش پو ش آور قسمتهای ضعیف سازه ای نمایان می شود و سطوح عملکرد سازه ای برای هر سطح نیاز لرزه ای قابل برآورد است. این روش برای ارزیابی لرز های سازه های موجود، برای طرح مقدماتی مقاوم سازی و نیز طراحی براساس عملکرد قابل استفاده است.

۳- کاربرد روش طیف ظرفیت در مقاو مسازی سازه ها

کاربرد روش طیف ظرفیت برای ارزیابی و مقاو مسازی لرزه ای ساز هها به صورت شماتیک در شکل ( ۱) نشان داده شده است. همانطور که در شکل مشخص است، بعد از تعیین منحنی های نیاز و ظرفیت میتوان به نقطه عملکردسازه دست یافت. منحنی نیاز به میرایی مؤثر و درنتیجه به سطح رفتار غیرخطی__ بادبندهای برون محور (EBF) و برخی ایرادات در طراحی این بادبندها

:نوع جدیدی از بادبندها که به تازگی استفاده از آن رو به افزایش می باشد سیستم بادبندی خارج از محور (EBF) میباشد. اما متاسفانه اکثر طراحان آشنایی اندکی با نحوه طراحی این سیستم بادبندی دارند.و اکثرا” به این سیستم به چشم یک بادبند پرده ای و در جهت تطبیق با نقشه معماری (به طور مثال در محل در و پنجره )نگاه می‌شود ؛ به همین جهت به نظر می رسد لازم باشد که در این زمینه بحث بیشتری انجام گیرد.

-معرفی:در طرح و محاسبه شکلهای مشبک و خرپاها تاکید بر این نکته هست که تلاشهای به وجود آمده همه به صورت نیروهای محوری باشند و امتداد محور اعضای جمع شده در یک گره تا حد امکان در یک نقطه تلاقی نماید تا از به وجود آمدن لنگرهای خمشی جلوگیری شود. تحقیقات سالهای اخیر در طراحی سازه های مقاوم در برابر زلزله نشان داده که با طرح مهاربندی خارج از مرکز، در سازه های فولادی می توان مزایایی در تامین شکل پذیری سازه و اطمینان بر رفتار آن در زلزله به دست آورد. چنانچه در شکل (۱) دیده می شود مهاربندی خارج از محور به این ترتیب به عمل می آید که طراح به میل خود مقداری خروج از مرکز (e) را در مهاربندیهای نوع ۷ و۸ (و یا انوا ع دیگر) تعبیه می کند ، به طوری که لنگر خمشی و نیروی برشی در طول کوتاهی از تیر (یعنیe) که به نام تیرچه ارتباطی (Link beam) نامیده می شود به وجود آید. تیرچه ارتباطی ممکن است در اثر لنگر خمشی به جاری شدن برسد؛ در این صورت ارتباط را خمشی(Moment link) میگویند ویا اینکه اگر طول (e) خیلی کوتاه باشد جاری شدن در برش اتفاق افتد که در این صورت ارتباط را برشی(Shear link) می نامند. به این ترتیب می توان با کنترل شکلپذیریی تیرچه ارتباطی، شکل پذیری قابل اطمینانی برای کل سازه ، درزلزله به دست آورد. مطابق آیین نامه ۲۸۰۰ ضریب شکل پذیری برای این سیستم سازه ای R=7 میباشد، که در مقایسه با سیستم هم محور R=6)) حدود ۱۵ درصد شکلپذیرتر میباشد ، که همین مساله باعث کاهش برش پایه زلزله به همین میزان می شود.

-ترکیب این سیستم با سیستمهای سازه ای دیگر:

الف: ترکیب در پلان:در بسیاری از موارد دیده شده است که طراحان در یک طبقه در یک یا چند دهانه از سیستم خارج از محور و در یک یا چند دهانه دیگر به موازات بادبندهای نوع اول از بادبندهای هم محور استفاده نموده اند. در اینجا باید به این نکته توجه داشت که از آنجایی که نوع رفتار این سیستم با سیستم هم محور متفاوت می باشد، اساساً استفاده از این سیستم در ترکیب با سیستم هم محور در یک جهت و یک پلان کاملاً مردود میباشد و باعث ایجاد رفتارهای غیر متعارف در سازه در هنگام زلزله میشود؛ به همین جهت به طراحان توصیه میشود که اگر تمایل به استفاده از این نوع سیستم بادبندی دارند ، در پلان، تمامی دهانه های بادبندی را به صورت خارج از محور طراحی نمایند . البته این مساله مانع استفاده از ترکیب این سیستم با سیستم قاب خمشی به صورت سیستم دوگانه و ضریب رفتار R=7.5 و یا استفاده از یک سیستم مقاوم متفاوت در جهت متعامد با جهتی که از سیستم برون محور استفاده شده است ، نمی باشد.

ب: ترکیب در ارتفاع:در این زمینه نیز در موارد بسیاری دیده شده است که طراحان در یک دهانه بادبندی خاص در برخی طبقات (عموماً بنا به ملاحظات معماری) از سیستم خارج از محور استفاده کرده و باقی طبقات را به صورت بادبند هم محور طراحی نموده اند. در اینجا نیز باید به این نکته توجه داشت که آیین نامه۲ ترکیب این سیستم با سیستمهای دیگر را در ارتفاع، به طور کامل ممنوع کرده است ، مگر در موارد زیر:

۱- برای بادبندهای برون محور بالاتر از ۵ طبقه میتوان بادبند طبقه آخر را به صورت هم محور و بدون تیرچه ارتباطی طراحی نمود.

۲- طبقه اول یک بادبند برون محور بیش از ۵ طبقه می تواند هم محور باشد به شرط آنکه بتوان نشان داد که ظرفیت الاستسک آن ۵۰ درصد بزرگتر از ظرفیت تسلیم طبقه بالاتر از طبقه اول باشد.

پس همانطور که دیده میشود بهتر است در صورت تمایل طراحان به استفاده از این سیستم بادبندی ، تمامی طبقات (مگر در موارد استثنا شده در بالا) به صورت خارج از محور طراحی گردند.

طراحی تیر در دهانه بادبندی: در سیستم بادبندی هم محور طراحی تیرها در دهانه های بادبتدی همانند دیگر تیرهای معمولی وتحت بارهای ثقلی انجام می پذیرد و در ترکیب بار زلزله نیروی قابل توجهی در این تیرها ایجاد نمیشود ؛ اما در سیستم برون محور علاوه بر برش و لنگرهای بارهای ثقلی ، در ترکیب بار زلزله ودر اثر نیروهای محوری ایجاد شده در بادبندها یک سری لنگر و برش اضافی در این تیرها ایجاد می شود و باعث بحرانی شدن ترکیب بار زلزله برای طراحی این تیرها می شود . معمولاً محل بحرانی در این تیرها محل اتصال بادبند به تیر می باشد و در این محل عموماً احتیاج به ورق تقویتی بال بالا وپایین می باشد.

طراحی تیرچه ارتباطی :یکی از مهمترین و حساسترین مسایل در سیستم برون محور ، طراحی تیرچه ارتباطی می باشد ؛ مساله ای که اکثر طراحان به راحتی از کنار آن میگذرند. برخی از مسایلی که در طراحی تیرچه ارتباطی باید به آن توجه نمود ، به شرح زیر می باشد:

۱- مطابق آیین نامه(( تیرچه ارتباطی باید تمامی شرایط مقطع فشرده را دارا باشد.)) به این ترتیب در صورت عدم استفاده از مقاطع نورد شده و استفاده از مقاطع ساخته شده (تیرورق) باید محدودیتهای مقطع فشرده در آن رعایت شود و مخصوصاً اتصال بال و جان تیرورق (حداقل در قسمت تیرچه ارتباطی) باید با جوش پیوسته (ونه جوش منقطع) انجام گیرد. ضمن آنکه باید توجه داشت که جوش اتصال بال به جان باید در برابر تنشهای برشی موجود کفایت لارم را داشته باشند.(این مساله در تیرچه های ارتباطی کوتاه که معمولاً به صورت برشی عمل نموده و داراری برشهای زیادی هستند بسیار حساستر میباشد.)

۳- مطابق آیین ئامه ((جان قطعه رابط باید از یک ورق تک بدون هرگونه ورق مضاعف کننده تشکیل یابد و هیچگونه بازشویی نباید در جان قطعه رابط تعبیه شود.)) به این ترتیب همانطور که مشخص است استفاده از مقاطع دوبل (به علت وجود بیش از یک جان ) و مقاطع زنبوری (به علت وجود سوراخ در جان ) برای قطعه رابط از نظر آیین نامه یک امر کاملاً مردود می باشد؛ امری که متاسفانه بسیار معمول می باشد. گاهی دیده شده است که برخی طراحان برای قطعه رابط از مقطع زنبوری استفاده نموده و تمامی سوراخها را در قسمت تیرچه ارتباطی به وسیله ورق تقویتی جان می پوشانند، که این مساله نیز به این دلیل که ورق تقویتی جان به نوعی یک ورق مضاعف کننده می باشد، از نظر آیین نامه مردود میباشد. پیشنهاد میشود که در صورت عدم جوابگویی مقاطع نورد شده تک برای این تیرها، طراحان از مقطع I شکل و به صورت تیرورق و با جوش پیوسته جان وبال در قسمت قطعه رابط استفاده نمایند و به هیچ وجه از مقاطع دوبل وزنبوری استفاده ننمایند.

۴- مطابق آیین نامه ((در انتهای قطعه رابط که عضو قطری به آن متصل است، باید سخت کننده جان در تمام ارتفاع ، در دو طرف قرار داده شود.)) یکی از شایعترین ایرادات در طراحی قطعه رابط همین مساله میباشد ، که طراحان باید به این مساله توجه بیشتری نمایند. این مساله به غیر از سخت کننده های میانی قطعه رابط میباشد که لزوم قرارگیری یا عدم قرارگیری آنها باید توسط طراحان مورد بررسی قرار گیرد.

-طراحی عضو قطری (بادبند):طراحی عضو قطری در این سیستم مشابه سیستم هم محور میباشد با این تفاوت که طبق آیین نامه ((هر بادبند باید دارای مقاومت فشاری ۱٫۵ برابر نیروی محوری نظیر مقاومت خمشی قطعه رابط باشد.)) با توجه به اینکه در حالت طراحی معمولی مقاومت فشاری بادبند و مقاومت خمشی قطعه رابط به همدیگر نزدیک میباشند ، رعایت این بند باعث بالا رفتن سطح مقطع بادبند تا حدود ۵۰ درصد نسبت به طراحی حالت معمولی در این سیستم میشود؛ ضمن آنکه باید توجه داشت که در این سیستم به دلیل آنکه معمولاً زاویه بادبندها با افق نسبت به سیستم هم محور بیشتر می باشد ، نسبت به سیستم هم محور نیروی محوری بیشتری در بادبندها ایجاد می شود.

-نتیجه گیری:استفاده صحیح از این سیستم بادبندی باعث شکلپذیری بیشتر سازه و کاهش برش پایه زلزله میشود ؛ اما در طراحی این بادبندها باید دقت کافی در جهت رعایت کلیه نکات آیین‌نامه ای چه از طرف طراحان و چه از طرف دستگاههای نظارتی انجا م پذیرد.

طراحی صحیح این بادبندها منجر به بادبندها و تیرهایی سنگین تر از حالت بادبند هم محور می شود ؛ به همین جهت پیشنهاد می شود که طراحان حتی الامکان از این سیستم به عنوان اولین گزینه استفاده ننمایند.

بادبندهای واگرا و برخی ایرادات در طراحی این بادبندها

نوع جدیدی از بادبندها که به تازگی استفاده از آن رو به افزایش می باشد سیستم بادبندی خارج از محور (EBF) میباشد. اما متاسفانه اکثر طراحان آشنایی اندکی با نحوه طراحی این سیستم بادبندی دارند.و اکثرا” به این سیستم به چشم یک بادبند پرده ای و در جهت تطبیق با نقشه معماری (به طور مثال در محل در و پنجره )نگاه می‌شود ؛ به همین جهت به نظر می رسد لازم باشد که در این زمینه بحث بیشتری انجام گیرد.

-معرفی:در طرح و محاسبه شکلهای مشبک و خرپاها تاکید بر این نکته هست که تلاشهای به وجود آمده همه به صورت نیروهای محوری باشند و امتداد محور اعضای جمع شده در یک گره تا حد امکان در یک نقطه تلاقی نماید تا از به وجود آمدن لنگرهای خمشی جلوگیری شود. تحقیقات سالهای اخیر در طراحی سازه های مقاوم در برابر زلزله نشان داده که با طرح مهاربندی خارج از مرکز، در سازه های فولادی می توان مزایایی در تامین شکلپذیری سازه و اطمینان بر رفتار آن در زلزله به دست آورد. تیرچه ارتباطی ممکن است در اثر لنگر خمشی به جاری شدن برسد؛ در این صورت ارتباط را خمشی(Moment link) میگویند ویا اینکه اگر طول (e) خیلی کوتاه باشد جاری شدن در برش اتفاق افتد که در این صورت ارتباط را برشی(Shear  link) می نامند. به این ترتیب می توان با کنترل شکلپذیریی تیرچه ارتباطی، شکلپذیری قابل اطمینانی برای کل سازه ، درزلزله به دست آورد. مطابق آیین نامه  ۲۸۰۰  ضریب شکلپذیری برای این سیستم سازه ای R=7  میباشد، که در مقایسه با سیستم هم محور R=6)) حدود  ۱۵  درصد شکلپذیرتر میباشد ، که همین مساله باعث کاهش برش پایه زلزله به همین میزان می شود.

-ترکیب این سیستم با سیستم های سازه ای دیگر:

الف: ترکیب در پلان:در بسیاری از موارد دیده شده است که طراحان در یک طبقه در یک یا چند دهانه از سیستم خارج از محور و در یک یا چند دهانه دیگر به موازات بادبندهای نوع اول از بادبندهای هم محور استفاده نموده اند. در اینجا باید به این نکته توجه داشت که از آنجایی که نوع رفتار این سیستم با سیستم هم محور متفاوت می باشد، اساساً استفاده از این سیستم در ترکیب با سیستم هم محور در یک جهت و یک پلان کاملاً مردود میباشد و باعث ایجاد رفتارهای غیر متعارف در سازه در هنگام زلزله میشود؛ به همین جهت به طراحان توصیه میشود که اگر تمایل به استفاده از این نوع سیستم بادبندی دارند ، در پلان، تمامی دهانه های بادبندی را به صورت خارج از محور طراحی نمایند . البته این مساله مانع استفاده از ترکیب این سیستم با سیستم قاب خمشی به صورت سیستم دوگانه و ضریب رفتار R=7.5  و یا استفاده از یک سیستم مقاوم متفاوت در جهت متعامد با جهتی که از سیستم برون محور استفاده شده است ، نمی باشد.

ب: ترکیب در ارتفاع:در این زمینه نیز در موارد بسیاری دیده شده است که طراحان در یک دهانه بادبندی خاص در برخی طبقات (عموماً بنا به ملاحظات معماری) از سیستم خارج از محور استفاده کرده و باقی طبقات را به صورت بادبند هم محور طراحی نموده اند. در اینجا نیز باید به این نکته توجه داشت که آیین نامه۲  ترکیب این سیستم با سیستمهای دیگر را در ارتفاع، به طور کامل ممنوع کرده است ، مگر در موارد زیر:

۱-  برای بادبندهای برون محور بالاتر از  ۵  طبقه میتوان بادبند طبقه آخر را به صورت هم محور و بدون تیرچه ارتباطی طراحی نمود.

۲-طبقه اول یک بادبند برون محور بیش از  ۵  طبقه می تواند هم محور باشد به شرط آنکه بتوان نشان داد که ظرفیت الاستسک آن  ۵۰  درصد بزرگتر از ظرفیت تسلیم طبقه بالاتر از طبقه اول باشد. پس همانطور که دیده میشود بهتر است در صورت تمایل طراحان به استفاده از این سیستم بادبندی ، تمامی طبقات (مگر در موارد استثنا شده در بالا) به صورت خارج از محور طراحی گردند.

-طراحی تیر در دهانه بادبندی: در سیستم بادبندی هم محور طراحی تیرها در دهانه های بادبتدی همانند دیگر تیرهای معمولی وتحت بارهای ثقلی انجام می پذیرد و در ترکیب بار زلزله نیروی قابل توجهی در این تیرها ایجاد نمیشود ؛ اما در سیستم برون محور علاوه بر برش و لنگرهای بارهای ثقلی ، در ترکیب بار زلزله ودر اثر نیروهای محوری ایجاد شده در بادبندها یک سری لنگر و برش اضافی در این تیرها ایجاد می شود و باعث بحرانی شدن ترکیب بار زلزله برای طراحی این تیرها می شود . معمولاً محل بحرانی در این تیرها محل اتصال بادبند به تیر می باشد و در این محل عموماً احتیاج به ورق تقویتی بال بالا وپایین می باشد.

۱- طراحی تیرچه ارتباطی :یکی از مهمترین و حساسترین مسایل در سیستم برون محور ، طراحی تیرچه ارتباطی می باشد ؛ مساله ای که اکثر طراحان به راحتی از کنار آن میگذرند. برخی از مسایلی که در طراحی تیرچه ارتباطی باید به آن توجه نمود ، به شرح زیر می باشد:

۲-  مطابق آیین نامه(( تیرچه ارتباطی باید تمامی شرایط مقطع فشرده را دارا باشد.)) به این ترتیب در صورت عدم استفاده از مقاطع نورد شده و استفاده از مقاطع ساخته شده (تیرورق) باید محدودیتهای مقطع فشرده در آن رعایت شود و مخصوصاً اتصال بال و جان تیرورق (حداقل در قسمت تیرچه ارتباطی) باید با جوش پیوسته (ونه جوش منقطع) انجام گیرد. ضمن آنکه باید توجه داشت که جوش اتصال بال به جان باید در برابر تنشهای برشی موجود کفایت لارم را داشته باشند.(این مساله در تیرچه های ارتباطی کوتاه که معمولاً به صورت برشی عمل نموده و داراری برشهای زیادی هستند بسیار حساستر میباشد .

۳-  مطابق آیین ئامه ((جان قطعه رابط باید از یک ورق تک بدون هرگونه ورق مضاعف کننده تشکیل یابد و هیچگونه بازشویی نباید در جان قطعه رابط تعبیه شود.)) به این ترتیب همانطور که مشخص است استفاده از مقاطع دوبل (به علت وجود بیش از یک جان ) و مقاطع زنبوری (به علت وجود سوراخ در جان ) برای قطعه رابط از نظر آیین نامه یک امر کاملاً مردود می باشد؛ امری که متاسفانه بسیار معمول می باشد. گاهی دیده شده است که برخی طراحان برای قطعه رابط از مقطع زنبوری استفاده نموده و تمامی سوراخها را در قسمت تیرچه ارتباطی به وسیله ورق تقویتی جان می پوشانند، که این مساله نیز به این دلیل که ورق تقویتی جان به نوعی یک ورق مضاعف کننده می باشد، از نظر آیین نامه مردود میباشد. پیشنهاد میشود که در صورت عدم جوابگویی مقاطع نورد شده تک برای این تیرها، طراحان از مقطع I  شکل و به صورت تیرورق و با جوش پیوسته جان وبال در قسمت قطعه رابط استفاده نمایند و به هیچ وجه از مقاطع دوبل وزنبوری استفاده ننمایند.

۴- مطابق آیین نامه ((در انتهای قطعه رابط که عضو قطری به آن متصل است، باید سخت کننده جان در تمام ارتفاع ، در دو طرف قرار داده شود.)) یکی از شایعترین ایرادات در طراحی قطعه رابط همین مساله میباشد ، که طراحان باید به این مساله توجه بیشتری نمایند. این مساله به غیر از سخت کننده های میانی قطعه رابط میباشد که لزوم قرارگیری یا عدم قرارگیری آنها باید توسط طراحان مورد بررسی قرار گیرد.

-طراحی عضو قطری (بادبند):طراحی عضو قطری در این سیستم مشابه سیستم هم محور میباشد با این تفاوت که طبق آیین نامه ((هر بادبند باید دارای مقاومت فشاری  ۱٫۵  برابر نیروی محوری نظیر مقاومت خمشی قطعه رابط باشد.)) با توجه به اینکه در حالت طراحی معمولی مقاومت فشاری بادبند و مقاومت خمشی قطعه رابط به همدیگر نزدیک میباشند ، رعایت این بند باعث بالا رفتن سطح مقطع بادبند تا حدود  ۵۰  درصد نسبت به طراحی حالت معمولی در این سیستم میشود؛ ضمن آنکه باید توجه داشت که در این سیستم به دلیل آنکه معمولاً زاویه بادبندها با افق نسبت به سیستم هم محور بیشتر می باشد ، نسبت به سیستم هم محور نیروی محوری بیشتری در بادبندها ایجاد می شود.

-نتیجه گیری:استفاده صحیح از این سیستم بادبندی باعث شکلپذیری بیشتر سازه و کاهش برش پایه زلزله میشود ؛ اما در طراحی این بادبندها باید دقت کافی در جهت رعایت کلیه نکات آیین‌نامه ای چه از طرف طراحان و چه از طرف دستگاههای نظارتی انجا م پذیرد. طراحی صحیح این بادبندها منجر به بادبندها و تیرهایی سنگینتر از حالت بادبند هم محور می شود ؛ به همین جهت پیشنهاد می شود که طراحان حتی الامکان از این سیستم به عنوان اولین گزینه استفاده ننمایند.

کنترل فشردگی مقاطع:

چنانچه از AISC برای طراحی سازه فلزی اسفاده شود ،میبایست مقدار تنش مجازFb برای تیرها فشرده درنظر گرفته شود و از ۰٫۶Fy به مقدار ۰٫۶۶ Fy تغییر یابد. برای ستون ها به دلیل استفاده از جوش در مقاطع جفت و عدم پیوستگی کامل طبق بند ۱۰-۱-۵-۴ مقطع فشرده نخواهد بود.با افزایش فاصله پروفایل های سازنده ستون ها میتوان قدرت مقطع جفت را در دو جهت مساوی کرد. برای بادبندها هم نیازی به فشرده بودن مقاطع نیست که برای این منظور، استفاده از قابلیت Auto Select در Etabs برای طراحی بادبند ها لازم نیست و این اجزاء در سازه با معرفی و تغییر مقطع کنترل میگردند.

افزایش تنش مجاز در آیین نامه ها:

در صورت استفاده از آیین نامه UBC برای طراحی سازه فلزی بجهت احتمال کم وقوع بار زلزله در حالت وجود بار زنده یا باد میتوان تنش مجاز را ۳۳% افزایش داد یا باید ضرایب ۰٫۷۵ در ترکیبات بار شامل بار زلزله اعمال شود. با تعریف UBC ،برنامه تنش مجاز را افزایش نمی دهد و مطابق توضیحات ذکر شده میبایست در ترکیب بارهایی که شامل نیروی زلزله میباشند همگی در ۰٫۷۵ ضرب گردند.

چنانچه در ETABS از آیین نامه AISC استفاده شود. طبق تعریف در پیشفرض تنظیمات آیین نامه، هنگامی که به ترکیب بار دارای زلزله میرسد، افزایش تنش مجاز لحاظ میشود و لازم نیست که این ضریب در ترکیبات بار وارد شود. برنامه ضریب کاهش ۰٫۷۵ بار را به صورت افزایش ۱٫۳۳ تنش مجاز لحاظ خواهد کرد.البته توجه داشته باشید چنانچه بخواهید با نیرویی که از ETABS در این حالت برداشت میکنید طراحی را کنترل کنید ،باید تنش مجاز را در ۱٫۳۳ ضرب کرد.

کنترل ترکیبات بار پیوست ۲-۲۸۰۰ :

در طراحی ستون ها میبایست ترکیبات بار ویژه پیوست ۲ آیین نامه ۲۸۰۰ نیز جداگانه بررسی شود.برای این منظور چنانچه از UBC برای طراحی سازه استفاده شود همانطور که در ادامه گفته خواهدشدامکان منظور نمودن این کنترل در خود Etabs وجود خواهد داشت، اما بدلیل اینکه مراجعی از قبیل نظام مهندسی ساختمان استان تهران استفاده از UBC را در طراحی سازه ها مجاز نمی داند و از لحاظ شباهت آیین نامه ای AISC نزدیک تر به آیین نامه ملی ما دیده شده است لذا میبایست پس از آنالیز و طراحی سازه با AISC خروجی مربوط به نیروی محوری ناشی از بار مرده ،زنده و زلزله درستون ها برداشت شود و با توجه به این نکته که در AISC تنش مجاز آیین نامه ای در ۱٫۳۳ بطور پیش فرض ضرب گردیده لذا با ضرب مجموع نیروی محوری در ضریب ۱٫۳۳ این افزایش تنش مجاز خنثی شود و ضوابط مربوطه برای کنترل کشش و فشار برای ستون ها درنظر گرفته شود..نتایج مربوط به کنترل ستون ها طبق پیوست ۲ -۲۸۰۰ برای ستون های کناری مهاربندها بحرانی ترخواهد بود.

تنظیمات لرزه ای ویژه پیوست۲-۲۸۰۰ در Etabs :

آیین نامه UBC مشابه آیین نامه AISC میباشد و تنها ترکیبات بار و ضوابط لرزه ای آن متفاوت است.ضوابط لرزه ای آیین نامه در پیوست دوم ۲۸۰۰ ایران مشابه ضوابط لرزه ای آیین نامه UBC میباشد.البته در ترکیبات بار اندکی در ضرایب تفاوت وجود دارد که در UBC در جهت اطمینان است.برای درنظر گرفتن ضوابط لرزه ای پیوست۲ آیین نامه ۲۸۰۰ برای کنترل ستون ها میبایست از منوی Define>Seismic Data>include Seismic Data فعال گردد که در این منو چون گزینه های مرتبط همگی مربوط به آیین نامه UBC میباشد وجز ضریب امگا از بقیه در ۲۸۰۰ حرفی به میان نیامده بنابراین با مقادیر Rh=1 , DL factor=0 آنها را خنثی مینماییم و مطابق مبحث۱۰ برای ضریب امگا مقدار ۰٫۴ برابر ضریب رفتارسازه در همان جهت را منظور مینماییم.

پس از طراحی سازه با UBCچنانچه ترکیب بار ویژه حاکم شود در قسمت Detail جزئیات طراحی هر ستون عبارت Special Combo درج میگردد که معمولا برای ستون ها کنار بادبند ها این ترکیب بار بحرانی خواهد بود.

در سازه فلزی جهت طراحی نیازی به لحاظ اثر پی دلتا نیست اما در سازه های فاقد مهار جانبی برای کنترل جابجایی نسبی طبقات استفاده از پی دلتا توصیه میشود.

تنظیمات ترکیب دو سیستم سازه ای در Etabs :

برای تنظیم آیین نامه و پارامترهای آن با اجرای دستور Option>Preferences>Steel Design پس از اتتخاب آیین نامه طراحی از کشوی Frame Type به جهت محدودیت برنامه برای سازه هایی که در دو طرف دارای دو سیستم متفاوت هستند به اشکالاتی بر میخوریم که برای دو حالت مهم و متداول در سازه ها نحوه برطرف نمودن مشکل مربوطه بیان شده است:

اگر در یک سمت قاب مهاربندی همگرا و در جهت عمود قاب مهاربندی واگرا داشته باشیم:
ابتا کلیه تیر،ستون و بادبند های سازه از نوع Braced Frame تعریف کنیدو هنگام طراحی تیر ها ، ستون ها و بادبند های واگرا از منویDesign>SFD>View Overwrites از نوع EBF درنظر گرفته شوند.لازم است ستون هایی که از یک طرف به بادبند واگرا و از طرف دیگر به بادبند همگرا وصل میشوند دو بار طراحی شوند.یکبار به صورت Braced Frame و بار دیگر EBF.

اگر در یک سمت قاب خمشی(با هر نوع شکل پذیری) و در سمت دیگر سیستم مهاربندی داشته باشیم:

در این حالت میبایست جهت طراحی دقیق از همان ابتدا دو فایل ایجاد نمود. یکی از نوع قاب خمشی و دیگری از نوع قاب مهاربندی تعریف گردد.برای هریک از این دو فایل تیر ها و ستون ها همگی در جهت اطمینان برای هر دو سمت از نوع قاب خمشی تعریف گردد(چراکه سیستم مهاربندی برای تیرها و ستون ها دارای الزامات خاصی در آیین نامه نیست).برای بادبندها از منویDesign>SFD>View Overwrites نوع آنها انتخاب شود ودر تنظیمات ویژه پیوست ۲-۲۸۰۰ برای هر کدام از دو فایل ضریب رفتار سیستم مرتبط در نظر گرفته شود. با مقایسه نتایج دو فایل در نهایت تیر ستون و بادبند ها برای بهینه نمودن جواب کنترل میگردد.

نتیجه گیری:

استفاده صحیح از این سیستم بادبندی باعث شکلپذیری بیشتر سازه و کاهش برش پایه زلزله میشود ؛ اما در طراحی این بادبندها باید دقت کافی در جهت رعایت کلیه نکات آیین‌نامه ای چه از طرف طراحان و چه از طرف دستگاههای نظارتی انجا م پذیرد. طراحی صحیح این بادبندها منجر به بادبندها و تیرهایی سنگینتر از حالت بادبند هم محور می شود ؛ به همین جهت پیشنهاد می شود که طراحان حتی الامکان از این سیستم به عنوان اولین گزینه استفاده ننمایند.

بادبندهای برون محور (EBF) و برخی ایرادات در طراحی این بادبندها

نوع جدیدی از بادبندها که به تازگی استفاده از آن رو به افزایش می باشد سیستم بادبندی خارج از محور۱(EBF) میباشد. اما متاسفانه اکثر طراحان آشنایی اندکی با نحوه طراحی این سیستم بادبندی دارند.و اکثرا” به این سیستم به چشم یک بادبند پرده ای و در جهت تطبیق با نقشه معماری (به طور مثال در محل در و پنجره )نگاه می‌شود ؛ به همین جهت به نظر می رسد لازم باشد که در این زمینه بحث بیشتری انجام گیرد.

در طرح و محاسبه شکلهای مشبک و خرپاها تاکید بر این نکته هست که تلاشهای به وجود آمده همه به صورت نیروهای محوری باشند و امتداد محور اعضای جمع شده در یک گره تا حد امکان در یک نقطه تلاقی نماید تا از به وجود آمدن لنگرهای خمشی جلوگیری شود. تحقیقات سالهای اخیر در طراحی سازه های مقاوم در برابر زلزله نشان داده که با طرح مهاربندی خارج از مرکز، در سازه های فولادی می توان مزایایی در تامین شکلپذیری سازه و اطمینان بر رفتار آن در زلزله به دست آورد. چنانچه در شکل (۱) دیده می شود مهاربندی خارج از محور به این ترتیب به عمل می آید که طراح به میل خود مقداری خروج از مرکز (e) را در مهاربندیهای نوع ۷ و۸ (و یا انوا ع دیگر) تعبیه می کند ، به طوری که لنگر خمشی و نیروی برشی در طول کوتاهی از تیر (یعنیe) که به نام تیرچه ارتباطی (Linkbeam) نامیده می شود به وجود آید. تیرچه ارتباطی ممکن است در اثر لنگر خمشی به جاری شدن برسد؛ در این صورت ارتباط را خمشی(Momentlink) میگویند ویا اینکه اگر طول (e) خیلی کوتاه باشد جاری شدن در برش اتفاق افتد که در این صورت ارتباط را برشی(Shear link) می نامند. به این ترتیب می توان با کنترل شکلپذیریی تیرچه ارتباطی، شکلپذیری قابل اطمینانی برای کل سازه ، درزلزله به دست آورد. مطابق آیین نامه ۲۸۰۰ ضریب شکلپذیری برای این سیستم سازه ای R=7 میباشد، که در مقایسه با سیستم هم محور R=6)) حدود ۱۵ درصد شکلپذیرتر میباشد ، که همین مساله باعث کاهش برش پایه زلزله به همین میزان می شود.

ترکیب این سیستم با سیستمهای سازه ای دیگر:

الف: ترکیب در پلان:در بسیاری از موارد دیده شده است که طراحان در یک طبقه در یک یا چند دهانه از سیستم خارج از محور و در یک یا چند دهانه دیگر به موازات بادبندهای نوع اول از بادبندهای هم محور استفاده نموده اند. در اینجا باید به این نکته توجه داشت که از آنجایی که نوع رفتار این سیستم با سیستم هم محور متفاوت می باشد، اساساً استفاده از این سیستم در ترکیب با سیستم هم محور در یک جهت و یک پلان کاملاً مردود میباشد و باعث ایجاد رفتارهای غیر متعارف در سازه در هنگام زلزله میشود؛ به همین جهت به طراحان توصیه میشود که اگر تمایل به استفاده از این نوع سیستم بادبندی دارند ، در پلان، تمامی دهانه های بادبندی را به صورت خارج از محور طراحی نمایند . البته این مساله مانع استفاده از ترکیب این سیستم با سیستم قاب خمشی به صورت سیستم دوگانه و ضریب رفتار R=7.5 و یا استفاده از یک سیستم مقاوم متفاوت در جهت متعامد با جهتی که از سیستم برون محور استفاده شده است ، نمی باشد.

ب: ترکیب در ارتفاع:در این زمینه نیز در موارد بسیاری دیده شده است که طراحان در یک دهانه بادبندی خاص در برخی طبقات (عموماً بنا به ملاحظات معماری) از سیستم خارج از محور استفاده کرده و باقی طبقات را به صورت بادبند هم محور طراحی نموده اند. در اینجا نیز باید به این نکته توجه داشت که آیین نامه۲ ترکیب این سیستم با سیستمهای دیگر را در ارتفاع، به طور کامل ممنوع کرده است ، مگر در موارد زیر:

۱- برای بادبندهای برون محور بالاتر از ۵ طبقه میتوان بادبند طبقه آخر را به صورت هم محور و بدون تیرچه ارتباطی طراحی نمود.

۲- طبقه اول یک بادبند برون محور بیش از ۵ طبقه می تواند هم محور باشد به شرط آنکه بتوان نشان داد که ظرفیت الاستسک آن ۵۰ درصد بزرگتر از ظرفیت تسلیم طبقه بالاتر از طبقه اول باشد.

طراحی تیر در دهانه بادبندی: در سیستم بادبندی هم محور طراحیتیرها در دهانه های بادبتدی همانند دیگر تیرهای معمولی وتحت بارهای ثقلی انجام میپذیرد و در ترکیب بار زلزله نیروی قابل توجهی در این تیرها ایجاد نمیشود ؛ اما درسیستم برون محور علاوه بر برش و لنگرهای بارهای ثقلی ، در ترکیب بار زلزله ودر اثرنیروهای محوری ایجاد شده در بادبندها یک سری لنگر و برش اضافی در این تیرها ایجادمی شود و باعث بحرانی شدن ترکیب بار زلزله برای طراحی این تیرها می شود . معمولاًمحل بحرانی در این تیرها محل اتصال بادبند به تیر می باشد و در این محل عموماًاحتیاج به ورق تقویتی بال بالا وپایین می باشد.

طراحی تیرچه ارتباطی :یکی ازمهمترین و حساسترین مسایل در سیستم برون محور ، طراحی تیرچه ارتباطی می باشد ؛مساله ای که اکثر طراحان به راحتی از کنار آن میگذرند. برخی از مسایلی که در طراحیتیرچه ارتباطی باید به آن توجه نمود ، به شرح زیر می باشد:

۱- مطابق آیین نامه(( تیرچه ارتباطی باید تمامی شرایط مقطع فشرده را دارا باشد.)) به این ترتیب در صورتعدم استفاده از مقاطع نورد شده و استفاده از مقاطع ساخته شده (تیرورق) بایدمحدودیتهای مقطع فشرده در آن رعایت شود و مخصوصاً اتصال بال و جان تیرورق (حداقل درقسمت تیرچه ارتباطی) باید با جوش پیوسته (ونه جوش منقطع) انجام گیرد. ضمن آنکه بایدتوجه داشت که جوش اتصال بال به جان باید در برابر تنشهای برشی موجود کفایت لارم راداشته باشند.(این مساله در تیرچه های ارتباطی کوتاه که معمولاً به صورت برشی عملنموده و داراری برشهای زیادی هستند بسیار حساستر میباشد

۳- مطابق آیین ئامه ((جان قطعه رابط باید از یک ورق تک بدون هرگونه ورق مضاعف کننده تشکیل یابد وهیچگونه بازشویی نباید در جان قطعه رابط تعبیه شود.)) به این ترتیب همانطور که مشخصاست استفاده از مقاطع دوبل (به علت وجود بیش از یک جان ) و مقاطع زنبوری (به علتوجود سوراخ در جان ) برای قطعه رابط از نظر آیین نامه یک امر کاملاً مردود می باشد؛امری که متاسفانه بسیار معمول می باشد. گاهی دیده شده است که برخی طراحان برای قطعهرابط از مقطع زنبوری استفاده نموده و تمامی سوراخها را در قسمت تیرچه ارتباطی بهوسیله ورق تقویتی جان می پوشانند، که این مساله نیز به این دلیل که ورق تقویتی جانبه نوعی یک ورق مضاعف کننده می باشد، از نظر آیین نامه مردود میباشد. پیشنهاد میشودکه در صورت عدم جوابگویی مقاطع نورد شده تک برای این تیرها، طراحان از مقطع I شکل وبه صورت تیرورق و با جوش پیوسته جان وبال در قسمت قطعه رابط استفاده نمایند و بههیچ وجه از مقاطع دوبل وزنبوری استفاده ننمایند.

۴- مطابق آیین نامه ((در انتهایقطعه رابط که عضو قطری به آن متصل است، باید سخت کننده جان در تمام ارتفاع ، در دوطرف قرار داده شود.)) یکی از شایعترین ایرادات در طراحی قطعه رابط همین مسالهمیباشد ، که طراحان باید به این مساله توجه بیشتری نمایند. این مساله به غیر از سختکننده های میانی قطعه رابط میباشد که لزوم قرارگیری یا عدم قرارگیری آنها باید توسططراحان مورد بررسی قرار گیرد.

طراحی عضو قطری (بادبند):طراحی عضو قطری در اینسیستم مشابه سیستم هم محور میباشد با این تفاوت که طبق آیین نامه ((هر بادبند بایددارای مقاومت فشاری ۱٫۵ برابر نیروی محوری نظیر مقاومت خمشی قطعه رابط باشد.)) باتوجه به اینکه در حالت طراحی معمولی مقاومت فشاری بادبند و مقاومت خمشی قطعه رابطبه همدیگر نزدیک میباشند ، رعایت این بند باعث بالا رفتن سطح مقطع بادبند تا حدود ۵۰ درصد نسبت به طراحی حالت معمولی در این سیستم میشود؛ ضمن آنکه باید توجه داشت کهدر این سیستم به دلیل آنکه معمولاً زاویه بادبندها با افق نسبت به سیستم هم محوربیشتر می باشد ، نسبت به سیستم هم محور نیروی محوری بیشتری در بادبندها ایجاد میشود.

استفاده صحیح از این سیستم بادبندی باعث شکل پذیری بیشتر سازه وکاهش برش پایه زلزله میشود ؛ اما در طراحی این بادبندها باید دقت کافی در جهت رعایتکلیه نکات آیین‌نامه ای چه از طرف طراحان و چه از طرف دستگاههای نظارتی انجا مپذیرد. طراحی صحیح این بادبندها منجر به بادبندها و تیرهایی سنگینتر از حالت بادبندهم محور می شود ؛ به همین جهت پیشنهاد می شود که طراحان حتی الامکان از این سیستم به عنوان اولین گزینه استفاده ننمایند.

بادبند های همگرا (CBF) و باد بند های واگرا (EBF)

بادبند‌های فولادی از جمله سیستم هایی هستند که در برابر نیروهای جانبی مقاومت می کنند با بادبندگذاری در تعدادی از قاب‌های ساختمان درهرامتداد و با کمک عملکرد دیافراگم صلب کف سازه می‌توان آن راستا را مهار شده در نظر گرفت . بادبند‌گذاری به دو نوع همگرا و واگرا تقسیم می شود . در مهاربندی همگرا امتداد اعضا شامل تیر، ستون و مهاربند همگرا از یک نقطه عبور می کنند.

از مزایا و معایب بادبندهای همگرا می توان به موارد زیر اشاره کرد :

مزایا:

_ سختی بالا برای سازه

_ کنترل تغییر مکان جانبی سازه تا حد زیاد

معایب:

_ایجاد محدودیت از نظر معماری برای ایجاد بازشو

_با توجه به سختی زیاد این مهاربندها شکل‌پذیری آنها کم می‌شود و در نتیجه قابلیت جذب و دفع نیروی زلزله در آنها کاهش پیدا می‌کند و ارتعاش در سازه بالا می‌رود.

مهاربندهای واگرا را در انواع زیر می توان به کار برد :

بادبندهای واگرا باید حداقل در یک انتهای باد بند به تیر متصل باشند و حداقل یک انتهای بادبند به گره تقاطع تیر و ستون متصل نباشد.

دراین مهاربندها شکل پذیری نسبت به بادبندهای همگرا افزایش پیدا می‌کند و عمل دفع انرژی ناشی از نیروی زلزله بهتر انجام می‌شود .

شکل‌پذیری در این مهاربند‌ی‌ها توسط جاری‌شدن تیر بین ۲ سر مهاربند و یا تیر بین مهاربند و ستون شکل می‌گیرد ، که این قسمت از تیر، تیر واسط نام دارد

زمانی که طول تیر واسط زیاد باشد جاری شدن آن توسط لنگر خمشی شکل می‌گیرد و زمانی که طول تیر واسط کم باشد جاری شدن آن توسط نیروهای برشی اتفاق می‌افتد . وقتی که تیر واسط توسط نیروهای وارده از طرف مهاربند وارد رفتار غیر خطی شد آن‌گاه شاهد تغییر شکل‌های زیاد از این تیر هستیم که همین شکل پذیری غیرارتجاعی عامل دفع نیروهای زلزله خواهد شد . البته باید این تیر را در حدی تقویت کنیم که تیر اجازه تغییر شکل را داشته باشد ولی از مکانیسم شدن آن جلوگیری به عمل آید.

برای کنترل شکل‌پذیری تیر واسط بایستی موارد زیر را عمل کنیم :

_در ابتدا و انتهای طول تیر واسط استفاده از سخت کننده الزامی است . (در تیر واسط سخت کننده‌ها تا پایان تیر ادامه پیدا می‌کنند.)

_زمانی که طول تیر واسط از یک متر کمتر باشد علاوه بر سخت کننده‌های ابتدایی و انتهایی از یک جفت سخت کننده در وسط تیر واسط استفاده می گردد.

_توصیه میشود طول تیر واسط از ۰٫۲ طول کل دهانه بیشتر نشود.

_زاویه بین عضو مهاربند و تیر واسط بین ۳۰ الی ۶۰ محدود شود.

_از بکار بردن تیرهای لانه زنبوری در تیرهای واسط جلوگیری شود.

_سعی گردد از مقاطع دوبل برای تیرهای واسط استفاده نگردد چرا که نیروی وارده از مهاربند مقدار زیادی دارد و بال تیر آهن‌ها قدرت انتقال این نیرو را ندارد.

مقایسه دو بادبند ۷ و ۸ (هم‌محور و بدون‌محور):

از دیدگاه معماری استفاده از بادبندهای ۷ نسبت به بادبندهای ۸ امکان ایجاد باز شوهای بزرگتری را برای تعبیه پنجره‌ها فراهم می‌کند . اما از دیدگاه سازه‌ای در بادبندهای ۷ نسبت به بادبندهای ۸ تغیر مکان‌های قاب افزایش پیدا می‌کند و مسیر انتقال نیرو بیشتر می شود . در بادبندگذاری ۸ در اولین طبقه مشکل بازشو (در) را نخواهیم داشت ولی در بادبندگذاری ۷ در اولین طبقه اولاً فضای بازشو محدود می‌گردد . ثانیاًبرای اتصال بادبندها به فونداسیون باید از ورق فولادی استفاده کرد

منابع:

  • پرتال تخصصی مهندسی عمران ( خانه عمران جوان)
  • پژوهشگاه بین المللی مهندسی زلزله- http://www.iiees.ac.ir

به این مطلب امتیاز دهید

نوشته های مشابه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

همچنین ببینید
بستن
دکمه بازگشت به بالا